原文地址:

一.本文所涉及的内容(Contents)

二.背景(Contexts)

  之前使用SQL把十进制的整数转换为三十六进制,SQL代码请参考:,其实它是基于二、八、十、十六进制转换的计算公式的,进制之间的转换是很基础的知识,但是我发现网络上没有一篇能把它说的清晰、简单、易懂的文章,所以我才写这篇文章的念头,希望能让你再也不用担心、害怕进制之间的转换了。

  下面是二、八、十、十六进制之间关系的结构图:

(Figure1:进制关系结构图)

下文会分4个部分对这个图进行分解,针对每个部分会以图文的形式进行讲解:

  1. (二、八、十六进制) → (十进制);

  2. (十进制) → (二、八、十六进制);

  3. (二进制) (八、十六进制);

  4. (八进制) (十六进制);

三.进制转换算法(Convert)

  在数字后面加上不同的字母来表示不同的进位制。B(Binary)表示二进制,O(Octal)表示八进制,D(Decimal)或不加表示十进制,H(Hexadecimal)表示十六进制。例如:(101011)B=(53)O=(43)D=(2B)H

(一) (二、八、十六进制) → (十进制)

(Figure2:其他进制转换为十进制)

  • 二进制 → 十进制

  方法:二进制数从低位到高位(即从右往左)计算,第0位的权值是2的0次方,第1位的权值是2的1次方,第2位的权值是2的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

  例:将二进制的(101011)B转换为十进制的步骤如下:

1. 第0位 1 x 2^0 = 1;

2. 第1位 1 x 2^1 = 2;

3. 第2位 0 x 2^2 = 0;

4. 第3位 1 x 2^3 = 8;

5. 第4位 0 x 2^4 = 0;

6. 第5位 1 x 2^5 = 32;

7. 读数,把结果值相加,1+2+0+8+0+32=43,即(101011)B=(43)D。

  • 八进制 → 十进制

  方法:八进制数从低位到高位(即从右往左)计算,第0位的权值是8的0次方,第1位的权值是8的1次方,第2位的权值是8的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

  八进制就是逢8进1,八进制数采用 0~7这八数来表达一个数。

  例:将八进制的(53)O转换为十进制的步骤如下:

1. 第0位 3 x 8^0 = 3;

2. 第1位 5 x 8^1 = 40;

3. 读数,把结果值相加,3+40=43,即(53)O=(43)D。

  • 十六进制 → 十进制

  方法:十六进制数从低位到高位(即从右往左)计算,第0位的权值是16的0次方,第1位的权值是16的1次方,第2位的权值是16的2次方,依次递增下去,把最后的结果相加的值就是十进制的值了。

  十六进制就是逢16进1,十六进制的16个数为0123456789ABCDEF。

  例:将十六进制的(2B)H转换为十进制的步骤如下:

1. 第0位 B x 16^0 = 11;

2. 第1位 2 x 16^1 = 32;

3. 读数,把结果值相加,11+32=43,即(2B)H=(43)D。

(二) (十进制) → (二、八、十六进制)

(Figure3:十进制转换为其它进制)

  • 十进制 → 二进制

  方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。 

  例:将十进制的(43)D转换为二进制的步骤如下:

1. 将商43除以2,商21余数为1;

2. 将商21除以2,商10余数为1;

3. 将商10除以2,商5余数为0;

4. 将商5除以2,商2余数为1;

5. 将商2除以2,商1余数为0; 

6. 将商1除以2,商0余数为1; 

7. 读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,101011,即(43)D=(101011)B。

(Figure4:图解十进制 → 二进制) 

(四) (八进制) (十六进制)

(Figure14:八进制与十六进制之间的转换)

  • 八进制 → 十六进制

  方法:将八进制转换为二进制,然后再将二进制转换为十六进制,小数点位置不变。

  例:将八进制的(327)O转换为十六进制的步骤如下:

1. 3 = 011;

2. 2 = 010;

3. 7 = 111;

4. 0111 = 7;

5. 1101 = D;

6. 读数,读数从高位到低位,D7,即(327)O=(D7)H。

(Figure15:图解八进制 → 十六进制)

  • 十六进制 → 八进制

  方法:将十六进制转换为二进制,然后再将二进制转换为八进制,小数点位置不变。

  例:将十六进制的(D7)H转换为八进制的步骤如下:

1. 7 = 0111;

2. D = 1101;

3. 0111 = 7;

4. 010 = 2;

5. 011 = 3;

6. 读数,读数从高位到低位,327,即(D7)H=(327)O。

(Figure16:图解十六进制 → 八进制)

四.扩展阅读

  1. 包含小数的进制换算:

(ABC.8C)H=10x16^2+11x16^1+12x16^0+8x16^-1+12x16^-2

=2560+176+12+0.5+0.046875

=(2748.546875)D

  2. 负次幂的计算:

2^-5=2^(0-5)=2^0/2^5=1/2^5

同底数幂相除,底数不变,指数相减,反过来

3. 我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。

五.参考文献(References)